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Abstract	–	Fast	and	accurate	estimation	of	the	visual	quality	of	compressed	video	content,	particularly	for	

quality-of-experience	(QoE)	monitoring	in	video	broadcasting	and	streaming,	has	become	important.		Given	

the	relatively	poor	performance	of	the	well-known	peak	signal-to-noise	ratio	(PSNR)	for	such	tasks,	several	

video	quality	assessment	(VQA)	methods	have	been	developed.		In	this	study,	the	authors’	own	recent	work	

on	an	extension	of	the	perceptually	weighted	PSNR,	termed	XPSNR,	is	analyzed	in	terms	of	its	suitability	for	

objectively	predicting	the	subjective	quality	of	videos	with	different	resolutions	(up	to	UHD)	and	bit-depths	

(up	to	10	bit/sample).		Performance	evaluations	on	various	subjective-MOS	annotated	video	databases	and	

investigations	of	the	computational	complexity	in	comparison	with	state-of-the-art	VQA	solutions	like	VMAF	

and	(MS-)SSIM	confirm	the	merit	of	the	XPSNR	approach.		The	use	of	XPSNR	as	a	reference	model	for	visually	

motivated	control	of	the	bit	allocation	in	modern	video	encoders	for,	e.	g.,	HEVC	and	VVC	is	outlined	as	well.	
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1. INTRODUCTION	

The consumption of compressed digital video content 

via over-the-air broadcasting or Internet Protocol (IP) 

based streaming services is steadily increasing. This, in 

turn, leads to a rapid increase in the amount of content 

distributed using these services. Thus, it is desirable to 

make use of schemes for automated monitoring of the 

instantaneous fidelity of the distributed audio-visual 

signals in order to maintain a certain degree of quality 

of service (QoS) or, as pursued more recently, quality 

of experience (QoE) [1]. With regard to the video signal 

part, such monitoring is realized by way of automated 

video quality assessment (VQA) algorithms which ana-

lyze each distributed moving-picture sequence frame-

by-frame with the objective of providing a frame-wise 

or scene-wise estimate of the subjective visual quality 

of the tested video, as it would be perceived by a group 

of human observers.  Full-reference VQA methods are 

generally employed, which means that the distributed 

video—here, the coded and decoded signal—is evalua-

ted in relation to the spatio-temporally synchronized, 

uncoded reference video.  In other words, the reference 

video represents the input sequence to the video enco-

der while the distributed video is the output sequence 

of the video decoder, as illustrated in Fig. 1. 
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Fig.	1 – Location of automatic VQA on the video distribution side. 

Given the well-known inaccuracy of the peak signal-to-

noise ratio (PSNR) in predicting an average subjective 

judgment of perceptual coding quality [2] for a specific 

codec (coder-decoder) c and image or video stimulus 

(or simply, signal) s, various better performing models 

have been devised over the last years.  The most widely 

employed are the structural similarity measure (SSIM) 

[3] and its multiscale extension, MS-SSIM [4], as well as 

a more recently proposed video multimethod assess-

ment fusion (VMAF) approach combining several other 

measures using a support vector machine [5]. 

Although VMAF was found to be a feasible tool for the 

evaluation of video compression systems [6] [7], its use 

for direct encoder control is challenging since it is not 

differentiable [8].  Furthermore, VMAF currently does 

not allow for local quality prediction below frame level 

and, owing to its reliance on several other VQA calcula-

tions, is quite complex computationally.  However, low-

complexity reliable metrics which can easily be integ-

rated into video encoders as control model for visually 

optimized bit allocation purposes, as is the case with 

PSNR and SSIM based approaches, are highly desirable. 

 

1.1 Prior work by the authors 

In JVET-H0047 [9], the authors proposed a block-wise 

perceptually weighted distortion model as an improve-

ment of the PSNR measure, termed WPSNR, which was 

examined further in JVET-K0206 [10] and finalized in 

JVET-M0091 [11].  More recently, model-free weighting 

was also studied [12].  The WPSNR output values were 

found to correlate with subjective mean opinion score 
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(MOS) data at least as well as (MS-)SSIM; see [13] [14]. 

One particular advantage of the WPSNR is its backward 

compatibility with the conventional PSNR.  Specifically, 

by choosing the exponent 0  ≤ � ≤ 1 [9] controling the 

impact of the local visual activity measure on the block-

wise distortion weighting parameter � (see Sec. 2) as 

 � =  0, (1)	

all weights � reduce to 1 and, as a result, the WPSNR 

becomes equivalent to the PSNR [9] [13].  It is shown 

in [9] [15] that the block-wise perceptual weighting of 

the local distortion, i. e., the sum of squared errors SSE 

between the decoded and original picture block signal, 

 ���� = � ∙ ��� = � ∙ ∑ 
��
���, �� − ���, �����,� , (2)	

can readily be utilized to govern the quantization step-

size in an image or video encoder’s bit allocation unit. 

In this way, an encoder can optimize its compression 

result for maximum performance (i. e., minimum mean 

weighted block SSE and, thus, maximum visual recon-

struction quality) according to the WPSNR. 

Although, as noted above, the WPSNR proved useful in 

the context of still-image coding and achieved similar, 

or even better, subjective performance than MS-SSIM-

based visually motivated bit allocation in video coding 

[15], its use as a general-purpose VQA metric for video 

material of varying resolution, bit-depth, and dynamic 

range is limited.  This is evident from the relatively low 

correlation between the WPSNR output values and the 

corresponding MOS data available, e. g., from the study 

published in [6] [7] or the results of JVET’s recent Call 

for Proposals (CfP) on video compression technologies 

with capability beyond HEVC [16].  In fact, this correla-

tion was found to be worse than that of (MS-)SSIM and 

VMAF, particularly for ultra-high-definition (UHD) and 

mixed 8-bit/10-bit video content with a resolution of 

more than, say, 2048×1280 luma samples. 

 

1.2 Outline of this paper 

Given the necessity for an improvement of the WPSNR 

metric as indicated in Sec. 1.1 above, this paper focuses 

on and proposes modifications to several details of the 

WPSNR algorithm.  After summarizing the block-wise 

operation of the WPSNR in Section 2, the paper follows 

up with descriptions of low-complexity extensions for 

motion picture processing (Section 3), improved per-

formance in case of varying video quality (Section 4) or 

input/output bit-depth (Section 5), and the handling of 

videos with very high and low resolutions (Section 6). 

Section 7 then summarizes the results of experimental 

evaluation of the respectively extended WPSNR, called 

XPSNR in this paper, on various MOS annotated video 

databases and Section 8 concludes the paper.  Note that 

parts of this paper were previously submitted in [14]. 

2. REVIEW	OF	BLOCK-BASED	WPSNR	

The WPSNR�,� output for a codec c and video frame (or 

still image) stimulus s is defined, similarly to PSNR, as 

 WPSNR�,� = 10 ∙ log%& '(∙)∙*�+,-%./
∑ (00122 3, (3)	

where W and H are the luma-channel width and height, 

respectively, of s, BD is the coding bit-depth per sample, 

 ����4 = �4 ∙ ∑ *��
�
����, �� − ���, ��.���,��∈62  (4)	

is the equivalent of (2) for block 74 at index k, with x, y 

as the horizontal and vertical sample coordinates, and 

 �4 = 89:;<92 =
>

 with exponent  � = 	 %� (5)	

represents the visual	sensitivity weight (a scale factor) 

associated with the N×N sized 74 and calculated from 

the block’s spatial	activity measure @4 and an average 

overall activity @AB�.  Details can be found in [13]–[15]. 

 C = roundH128 ∙ K (∙)
LMN&∙�%O&P (6)	

was chosen since, for the commonly used HD and UHD 

resolutions of 1920×1080 and 3840×2160 pixels, this 

choice conveniently aligns with the largest block size in 

modern video codecs.  @AB� is defined empirically such 

that, on average, �4 ≈ 1 over a large set of test images 

and video frames [10].  Hence, as indicated in Sec. 1.1, 

the WPSNR is a generalization of the PSNR by means of 

a block-wise weighting of the assessed SSE. 

For video signals, the frame-wise logarithmic WPSNRc,s 

values are averaged arithmetically to get a single result: 

 WPSNR� =	 %R ∙ ∑ WPSNR�,�SRTU% , (7)	

with F denoting the evaluated number of video frames. 
 

3. EXTENSION	FOR	MOVING	PICTURES	

The spatially	adaptive WPSNR method of [13] [15] and 

Sec. 2 can easily be extended to motion picture signals �T , where i is the frame index in the video sequence, by 

introducing a temporal	adaptation into the calculation 

of the visual activity @4.  Given that in our prior studies, 

 @4 = max'@YBZ� , 8 %
N[/∑ \ℎ^S��, ��\��,��∈62 =�3, (8)	

where ℎ^ = � ∗ ^̀ is the signal resulting from filtering 

s with the spatial	highpass filter ^̀, the temporal adap-

tation can be integrated by adding to ℎ^ the weighted 

result ℎa = � ∗ à of a temporal	highpass filtering step: 
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@b4 = max'@YBZ� , 8 %
N[/∑ \ℎ^S��, ��\ + d\ℎaS��, ��\��,��∈62 =�3.	

Two simple highpass filters à were found to be useful. 

The first one, a first-order FIR applied for frame rates 

of 30 Hz or lower, is ℎaS��, �� = �T��, �� − �T-%��, �� and 

the second one, a second-order FIR used, accordingly, 

for frame rates above 30 and up to 60 Hz, is defined as ℎaS��, �� = �T��, �� − 2�T-%��, �� + �T-���, ��.     In other 

words, one or two previous frames are used to obtain 

a simple estimate of the temporal	activity in each block 74 of each signal s over time.  Naturally, for frame rates 

higher than 60 Hz, a third-order FIR could be specified, 

but due to a lack of correspondingly recorded content, 

such operating points have not been examined yet. The 

dependency of the filter order of à on the frame rate 

is based upon psychovisual considerations: the limited 

temporal (highpass-like) integration of visual stimuli 

in human perception [17] implies that a shorter filter 

impulse response should be employed at relatively low 

frame rates than at higher ones.  Note, also, that taking 

the absolute values of the first-order highpass outputs 

as above is identical to the “absolute value of temporal 

information” (ATI) filter described in [18]. 

The relative weight d is an experimentally determined 

constant for which d = 2 was selected.  To compensate 

for the increased variance in @b4 relative to @4 after the 

introduction of the ht term, @AB� is modified accordingly 

[14], resulting in @bAB� which, in turn, yields the weight 

 �e4 = 89b:;<9b2 =
>

 with, again,  � = 	 %� (9)	

as a spatio-temporal visual sensitivity measure.  It must 

be noted that the temporal activity component of @b4 is 

a quite crude, but very low-complexity, approximation 

of a 74-wise motion estimation operation, as typically 

performed in all modern video codecs.  Evidently, more 

elaborate, but computationally more complex, activity 

metrics accounting for block-internal motion between 

frames i, i	–1 and, for high frame rates, i	–2 before deri-

ving ℎaS  may be devised [19] [20].  Such designs, which 

may use neural networks [21] or estimations of multi-

scale statistical models [22], are not considered here 

since one objective is to maintain very low complexity. 
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Fig.	2 – Effect of different temporal WPSNR averaging methods on 

coded video with visual quality drop (MarketPlace, HD, 10s [16]). 

4. TEMPORALLY	VARYING	VIDEO	QUALITY	

It was described in Sec. 2 that, for video sequences, the 

traditional approach is to average the individual frame 

(W)PSNR values so as to obtain a single measurement 

value for a complete video.  It was observed [14] that, 

for compressed video content which strongly varies in 

visual quality over time, such averaging of frame-wise 

model output may not always correlate well with MOS 

values provided by human observers.  The averaging of 

logarithmic (W)PSNR values appears to be especially 

suboptimal on decoded video material of high overall 

visual quality in which, however, brief passages exhibit 

relatively low quality.  With the growing popularity of 

rate adaptive video streaming, particularly on mobile 

devices, such situations actually occur quite frequently. 

It was discovered experimentally that, under such cir-

cumstances, non-expert viewers assign relatively low 

scores to the tested video during subjective VQA tasks, 

even if the majority of frames of the compressed video 

are of excellent quality to their eyes.  This observation, 

which is confirmed by QoE-related feedback of consu-

mers as reported by, e. g., Netflix [8], indicates that the 

log-domain average WPSNR values of (7) tend to over-

estimate the subjective quality in such cases. 

A simple solution to this problem is to apply a square-

mean-root (SMR) approach [23] which takes the arith-

metic average of the square-roots of the linear-domain 

per-frame WPSNR�,� data (before taking their base-10 

logarithms) and, only thereafter, applies the logarithm: 

 WPSNR�f = 20 ∙ log%& 'R∙√(∙)∙*�+,-%.
∑ h∑ (00122iSjk 3. (10)	

Note the use of constant 20 in (10) instead of 10 in (3), 

representing the linear-domain squaring operation.  A 

comparison of WPSNR�  and WPSNRlf  is given in Fig. 2. 

 

5. VARYING	INPUT	OR	OUTPUT	BIT-DEPTH	

Typically, the input and output bit-depths of the color 

planes of a video presentation are held constant for a 

specific distribution path.  Sometimes, however, it may 

be beneficial to perform automated VQA across video 

content of varying bit-depth, e. g., when, as in [6] [7], a 

part of the source material is not available in high-bit-

depth (at least 10 bit per sample) format.  The WPSNR 

measure was designed so as to “favor” high bit-depths 

over lower ones by returning somewhat higher output 

values on otherwise identical input signals, assuming 

that 10 or 12-bit playback would exhibit slightly higher 

quality than 8-bit playback.  This was done by defining 

 @AB� = 26m ∙ KLMN&∙�%O&
(∙) , (11)	

i. e., dependent on BD	before exponentiation by � in (5). 
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Recent experiments conducted by the present authors, 

however, suggest that the gain in visual quality due to 

bit-depths higher than 8 bit per sample is much lower 

than the gain anticipated by the WPSNR metric.  Hence, 

the correlation of WPSNR with MOS data on annotated 

databases of mixed-bit-depth video content is reduced 

by an undesirable and unnecessary amount. 

In order to address this issue, a modified definition of 

the @AB� constant used in [13]–[15] is suggested.  Given 

the change to the visual activity @4 described in Sec. 3, 

 @bAB� = 26m/>-o ∙ KLMN&∙�%O&
(∙)  (12)	

is proposed to render the visual sensitivity weight �e4  

independent of BD	after the exponentiation by � in (9) 

and, at the same time, compensate for the modified @b4. 

 

6. HIGH	AND	LOW-RESOLUTION	VIDEOS	

It was noted that, especially for UHD images and video 

sequences, the initial WPSNR assessments of [9]–[11] 

or [13] [15] still correlate quite poorly with subjective 

judgments of visual coding quality.  In fact, on this kind 

of content the WPSNR was found to perform only mar-

ginally better than the conventional PSNR metric.  One 

possible explanation is that UHD videos are generally 

being viewed on similar screen sizes as low-resolution 

HD input with at most 1920×1080 luma samples.  As a 

result, the samples of UHD images are being displayed 

smaller than those of (upscaled) HD images, a fact that 

should be taken into account during the calculation of 

the visual activity in the algorithm of Sec. 3. 

A logical solution here is to extend the spatial support 

of the highpass filter ^̀ so that it extends across more 

neighboring samples of s[x, y].  Since in [10], the filter is 

 ℎ^S��, �� = �T��, �� ∗ p−1 −2 −1−2 12 −2−1 −2 −1q (13)	

and in [13], a scaled version thereof (multiplied by ¼)1, 

a simple approach would be to upsample ^̀ by a factor 

of two, i. e., to increase its size from 3×3 to 6×6 or 7×7. 

This, however, would significantly increase the compu-

tational complexity of the calculation of @b4. 

Therefore, an alternative approach is pursued in which @b4  is obtained from a 4× downsampled version of input 

frame sequence �T-�, �T-%, �T when the image or video 

is larger than 2048×1280 luma samples.  Hence, only a 

single value of ℎ^S��, ��  and, for videos, of ℎaS��, ��  is 

computed for each 2×2 quadruple of pixels of �T .  This 

multiscale principle is not new but has been applied in 

various VQA methods, most prominently MS-SSIM [4]. 

                                                             
1  Divisions by powers of 2 can be implemented via right-shifts. 

It is worth mentioning in this respect that the down-

sampling and highpass operations can be unified into 

a single processing step by designing the highpass fil-

ters appropriately, thereby resulting in minimum com-

putational overhead.  The following filter was devised: 

ℎr^S��, �� = �T��, �� ∗
st
tt
tu
0 −1 −1−1 −2 −3−1 −3 12

−1 −1 0−3 −2 −112 −3 −1−1 −3 12−1 −2 −30 −1 −1
12 −3 −1−3 −2 −1−1 −1 0 wx

xx
xy
, (14)	

ℎraS��, �� = �̌T��, �� − �̌T-%��, ��  or (15)	

 �̌T��, �� − 2�̌T-%��, �� + �̌T-���, ��, 
where accent 	 ̌denotes the downsampling process and 

�̌T��, �� = �T��, �� + �T��+1, y] + �T��, y	+1] + �T��+1, y	+1]. 

Naturally, higher downsampling factors like 16× could 

be used for very high resolutions such as 7680×4320 

(8K), but as with very high frame rates in Sec. 3, such a 

configuration could not be studied intensively due to a 

lack of correspondingly recorded material. 

By way of �̌T��, ��, the spatio-temporal highpass values 

required for the calculation of @b4 need to be obtained 

only for the even values of x and y, i. e., for every fourth 

value of s.  This particular benefit of the downsampled 

highpass operation is illustrated in Fig. 3 for an exemp-

lary case of a WPSNR analysis block of 12×12 samples 

(74 with N = 12).  Other than constraining x and y to be 

incremented only in steps of two in the downsampling 

case, the calculation of @b4 (or @4), as described in Sec. 

3, can stay unchanged, including the division by 4C� in 

(8) which is compensated for by ℎr^S  and ℎraS . 
It must be emphasized that the downsampling of �T is 

only done implicitly during the derivation of the block-

wise @b4 (or @4  for still-image signals).  The SSE values 

accumulated by the WPSNR methods in (3), (7), or (10) 

are still obtained at the input resolution as in the PSNR, 

without downsampling even for UHD signals. 

Having addressed high (UHD) resolutions, a particular 

shortcoming in the WPSNR model was also discovered 

at very low resolutions where, due to (6), the block size 

becomes relatively small.  Specifically, it was observed 

that, for C ≤  24 or so, large outliers may exist in the � 

matrix, causing undesirably strong weighting of some 

block SSE values in (4) and, as a result, a relatively low 

WPSNR figure which does not coincide with subjective 

impression.  In order to minimize the likelihood of such 

occurrences, in-place smoothing of the block weights � or �e  prior to their use in (4) is proposed.  Let �4 be 

the previous block’s weight (i. e., �4{% has already been 

calculated) and assume that k increases first from left 

to right and then from top to bottom across the picture 
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Fig.	3 – Sample-wise spatial highpass filtering, using Hs, of signal 

si[4, 4] (left) without (center) and with (right) downsampling of 

si during filtering.  When downsampling, 4 inputs yield 1 output. 

 

(i. e., in line-scan fashion), starting at | = 0 which is lo-

cated at the top-left corner of the picture.  Then, given 

• the left neighbor, L, of �4 as } =  0 if k is in the 

first picture block-column, otherwise } = �4-%, 

• the top neighbor, T, of �4 as ~ =  0 if k is in the 

first picture block-row, otherwise ~ = �4-(�, 

• the right neighbor, R, of �4 as � =  0 if k is in the 

last picture block-column, otherwise � = �4{%, 

with WK being the picture width in units of k (stride), 

for all | = 1, 2, …, N	–1 (excluding | =  0) change �4 to 

 �4f = min*�4, max
}, ~, ��. (16)	

and use �4f  instead of �4  or �e4  whenever it is available 

and the picture is of size 640×480 samples or smaller. 

This post-processing of the �4  is easy to implement in 

hardware and software and effectively removes strong 

“peaks” in the block weighting for some low-resolution 

input without sacrificing the benefit of perceptual SSE 

weighting over PSNR-like unweighted SSE assessment. 

An example is shown in Fig. 4 for a set of MPEG-4 en-

coded videos of resolution 352×288 luma samples.  As 

can be observed, the smoothing moves the outlier data 

of video hall closer to the data of the remaining videos. 

 

7. EXPERIMENTAL	EVALUATION	

The WPSNR method extended by the algorithms pre-

sented in the previous sections, called “XPSNR” for the 

sake of differentiability, was evaluated on a selection of 

MOS annotated databases of compressed and decoded 

video content of different resolutions and bit-depths, 

up to and including UHD and 10 bit per sample.  Spe-

cifically, two types of mean MOS-vs-XPSNR correlation 

coefficients were calculated to determine the average 

accuracy by which the objective XPSNR values predict 

the subjective MOS assessments for a specific class of 

videos.  Pearson’s linear correlation coefficient (PLCC) 

quantifies the degree of linear-model fit [24] whereas 

Spearman’s rank order correlation coefficient (SROCC) 

assesses how well the relationship between MOS and 

XPSNR pairs of values can be described using a mono-

tonic—but not necessarily linear—function [25].  The 

correlation statistics for the widely used PSNR, SSIM, 

MS-SSIM, and VMAF measures as well as the original 

block-based WPSNR [13] serve as comparative figures. 

 

Fig.	4 – Effect of in-place smoothing of �e  on stability of estimating 

MOS values (true quality, normalized to range 0–1) by the WPSNR 

with the extensions of Secs. 3–5 (prediction, dB units).  Videos are 

MPEG-4 compressed 352×288 sized stimuli of ECVQ dataset [30]. 

 

7.1 Correlation with subjective MOS data 

In order to simplify comparisons, the annotated video 

databases already utilized in [26] are adopted for this 

evaluation.  Specifically, all video	compression distorted 

(MPEG-2, MPEG-4, H.264, H.265, and Dirac) subsets of 

the Yonsei [27], LIVE [28], IVP [29], ECVQ, EVVQ [30], 

as well as SJTU 4K Video Subjective Quality [31] data-

bases, all of which offer per-video MOS data, are used. 

To add more content compressed with state-of-the-art 

codecs, we further included the sequences coded with 

H.265/HEVC [32] and Fraunhofer HHI’s response [33], 

created for evaluation in JVET’s recent CfP [16], as well 

as those coded by HM [34] and VTM [35] for the HEVC-

VVC subjective evaluation published in [6] [7], for which 

B-Com kindly agreed to provide per-video VQA values. 

The ECVQ and EVVQ subsets exhibit the lowest and the 

Yonsei, SJTU, CfP, and HEVC-vs-VVC subsets the highest 

(UHD) video resolutions.  The others, e. g. IVP and parts 

of [6] [7] and [16] (HD), end up in-between. 

The VMAF data for the aforementioned datasets were 

obtained with software version 1.3.15 (Sep. 2019) and 

VQA model version 0.6.1 (4K subvariant for UHD con-

tent).  The VMAF software [5] also provided the PSNR 

and SSIM statistics.  The MS-SSIM, WPSNR, and XPSNR 

values were calculated with proprietary C++ software, 

using only the luma component of the video sequences 

to derive the model output.  Further metrics like those 

of [18] [22] as well as handling of the chroma compo-

nents are planned to be included in follow-up studies. 

Tables 1 and 2 contain the dataset-wise (in rows) PLCC 

and SROCC results, respectively, for the comparisons of 

y 
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the subjective MOS annotations and the results of each 

objective VQA measure (in columns) examined herein. 

The closer the correlation value for a VQA metric is to 

one, the better the metric succeeds in predicting aver-

age (across frames and videos) quality as judged by a 

group of human viewers.  For each dataset, the best re-

sult is written in bold type.  The LIVE and IVP sets also 

contain distortion types resembling error concealment 

techniques applied, e. g., during IP packet loss.  As the 

tested VQA methods were not explicitly developed for 

such scenarios, the correlation values here are some-

what lower than those for the other sets. 

Overall, it can be observed that the original WPSNR of 

[10] [13] reaches significantly higher correlation with 

the MOS data than the PSNR metric and that the XPSNR 

algorithm further increases this advantage.  Moreover, 

the performance of the XPSNR matches (for PLCC), or 

even exceeds (for SROCC), that of the best of the other 

evaluated VQA methods (VMAF for PLCC and SSIM for 

SROCC) on average, as tabulated in the “mean” rows, a 

result which indicates a clear benefit of this approach. 

7.2 Comparison of computational complexity 

To evaluate the computational complexity of XPSNR in 

relation to that of the other VQA methods tested, soft-

ware runtime analysis (using virtual in-RAM I/O) with 

single-threaded execution was carried out. The results, 

albeit not very accurate, indicate that the WPSNR and 

SSIM algorithms are about 2× as complex as the PSNR 

design, XPSNR is about 3× as complex as PSNR, and the 

MS-SSIM and VMAF methods are much more complex. 

Note that, due to independent calculability of the per-

block �4 and ����4 data, the WPSNR and XPSNR can 

easily be optimized for fast, multi-threaded execution. 

 

8. DISCUSSION	AND	CONCLUSION	

This paper reviewed, and proposed extensions to, the 

authors’ previous work on perceptually weighted peak 

signal-to-noise (WPSNR) assessments of compressed 

video material.  More precisely, a low-complexity tem-

poral visual activity model (Sec. 3), an alternative frame 

averaging method (Sec. 4), bit-depth independent out-

put value scaling (Sec. 5), and spatial 4× downsampling 

(for very high resolutions) and in-place smoothing (for 

very low resolutions) while calculating the block-wise 

visual sensitivity values � (Sec. 6) were incorporated 

into the WPSNR design.  The resulting extended	WPSNR 

algorithm, called XPSNR, was demonstrated to perform 

at least as well as the best competing state-of-the-art 

VQA solutions in predicting the subjective judgments 

of a number of MOS annotated coded-video databases. 

This was achieved with a notably lower computational 

complexity than that required for obtaining, e. g., VMAF 

or MS-SSIM results, and without optimizing the XPSNR 

parameters (@YBZ, @AB�, �, and d) for the particular sets 

Table	1 – Evaluation results for Pearson linear correlation.  High-

er values indicate higher correlation with associated MOS values. 

Set	 PSNR	 SSIM	 MS-SSIM	 VMAF	 WPSNR	 XPSNR	

[27] 0.822 0.789 0.765 0.942	 0.916 0.919 

[28] 0.539 0.626 0.675 0.729	 0.637 0.702 

[29] 0.632 0.570 0.546 0.591 0.686 0.707	

ECVQ 0.733 0.879	 0.853 0.830 0.848 0.840 

EVVQ 0.727 0.881 0.874 0.937	 0.880 0.898 

SJTU 0.721 0.765 0.810 0.827 0.783 0.829	

CfP 0.717 0.794 0.743 0.862 0.692 0.864	

[6] 0.722 0.826 0.799 0.855	 0.759 0.817 

mean 0.702 0.766 0.758 0.822	 0.775 0.822	

 
Table	2 – Evaluation results for Spearman rank order correlation. 

As in Table 1, smoothing is used only on the ECVQ and EVVQ sets. 

Set	 PSNR	 SSIM	 MS-SSIM	 VMAF	 WPSNR	 XPSNR	

[27] 0.860 0.949	 0.925 0.915 0.939 0.935 

[28] 0.523 0.694 0.732 0.752	 0.605 0.675 

[29] 0.647 0.635 0.574 0.580 0.690 0.709	

ECVQ 0.762 0.916	 0.881 0.736 0.859 0.847 

EVVQ 0.764 0.908 0.911 0.874 0.905 0.926	

SJTU 0.739 0.807 0.799 0.791 0.814 0.877	

CfP 0.739 0.810 0.881	 0.867 0.724 0.866 

[6] 0.703 0.848 0.832 0.850	 0.730 0.813 

mean 0.717 0.821 0.817 0.796 0.783 0.831	

 

of compressed video sequences employed in this study. 

Moreover, as noted in Sec. 1.1, the per-block sensitivity 

weight �4  of (4) or �e4  of (9) can be used to easily adapt 

the quantization parameter (QP) in traditional coders 

to the instantaneous input characteristics, without ha-

ving to rely on ��
� [9]–[11] [13]–[15] [33]. Specifically, 

 QP4 = QPf − round*3 ∙ log�
�e4�. (17)	

can be used to XPSNR-optimize the quantization step-

size inside an HEVC or VVC encoder, initialized using a 

frame-wise constant QPf, on a coding block basis.  This 

beneficial aspect, along with an integration and evalu-

ation of chroma-channel or high dynamic range (HDR) 

statistics (see, e. g., [36]) and multi-threaded operation, 

will be the focus of future work on this VQA algorithm. 
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